

NASA – BSEE PRA Procedures Guide for Offshore Applications

March 1, 2018

Bob Cross
PRA Lead for BSEE Tasks
NASA Johnson Space Center

BSEE PRA Guide

Purpose

 This Guide is intended to assist in the development of Probabilistic Risk Assessment (PRA) of offshore drilling facilities, in order to support risk-informed decision-making by Bureau of Safety and Environmental Enforcement (BSEE) and by the industry.

Scope

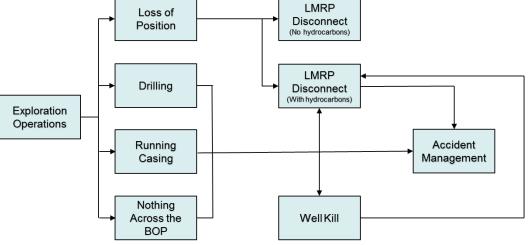
- This Guide is not a policy document, nor does it establish regulatory requirements. It discusses particular modeling techniques that have been found to be useful in a range of applications for decision-making about complex and high-hazard facilities.
- It is derived from a combination of the NASA PRA Procedures Guides and is being developed with help from Idaho National Lab (INL).

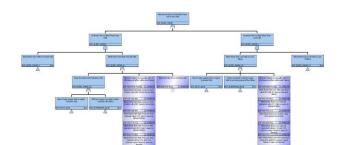
BSEE PRA Guide

- Section 1 Introduction
- Section 2 Risk Analysis Techniques
- Section 3 Data Development / Quantification
- Section 4 Results Presentation and Interpretation
- Appendices



BSEE PRA Guide Section 2, Risk Analysis Techniques




How to build a logic model

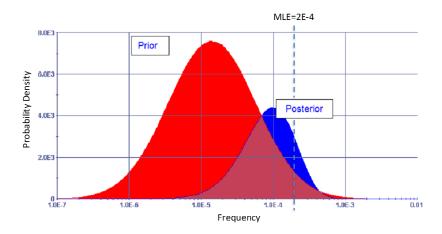
- Fault trees, event trees, simulation
- Uses a running example for illustration

Event Tree

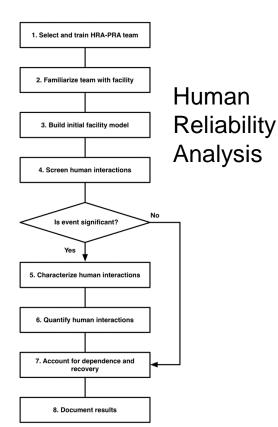
Fault Tree

Running Example

BSEE PRA Guide Section 3, Data Development/Quantification



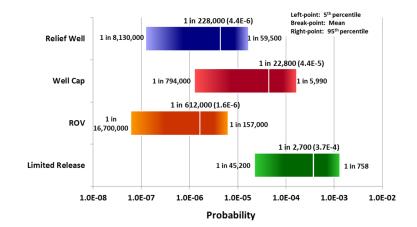
How to develop data


- Component failure, common cause, human error
- Using facility specific data Bayesian updating

	Constant failure rate	
Component in operation fails to run, or component changes state during mission (state of component	$U = 1 - e^{-\lambda_0 T_m} \approx \lambda_0 T_m$ T_m : Mission time	Number of events k in total exposure time T (total time standby component is operating, or time the
	λ_0 : Operating failure rate	
continuously monitored)	Approximation is adequate when $\lambda_0 T_m \ll 1$	component is on line)

Component Failure Rates

Bayesian Updating



BSEE PRA GuideSection 4, Results Presentation and Interpretation

 How to quantify the model, including uncertainty, reviewing results

#	Prob/Freq	Total %	Cut Set	Description
Total	4.18E-04	100	Displaying 5 Cut Sets. (10551 Original)	
1	3.70E-04	88.6		
	1.00E+00		INIT-EV_DRILLING	Well Kick While Drilling
	3.70E-04		BOP-HUM-ERR-KICKDET	Operator fails to realize a kick has occurred or does not take timely action
		End State	LIMITEDRELEASE	
2	3.70E-05	8.86		
	1.00E+00		INIT-EV_DRILLING	Well Kick While Drilling
	1.00E-01		BOP-CYL-JAM-BSRDP	BSRs fail to close and seal when drill string is in the hole
	3.70E-04		BOP-HUM-ERR-KICKDET	Operator fails to realize a kick has occurred or does not take timely action
		End State	CAPPINGSTACKCONTAIN	
3	5.92E-06	1.42		
	1.00E+00		INIT-EV_DRILLING	Well Kick While Drilling
	1.60E-01		BOP-HUM-ERR-HANGOFF	Driller fails to position drill pipe properly before activating BSR
	3.70E-04		BOP-HUM-ERR-KICKDET	Operator fails to realize a kick has occurred or does not take timely action
	1.00E-01		DP_TOOLJOINT_PRESENT	Drill Pipe Tool Joint is Present
		End State	CAPPINGSTACKCONTAIN	

Uncertainty

Cut sets

PRA Guide Status

- Second draft is on the BSEE website (and link for this meeting)
- Third draft planned for late 2018, updated, new examples
- The PRA "white paper" (also on the BSEE website and link for this meeting) is a high level overview of PRA